Biblioteca Libros

Biblioteca de descarga de ebooks en formatos PDF, EPUB y MOBI

Topología diferencial

Sinopsis del Libro

Libro Topología diferencial

A finales del siglo XX, año 1998, dos de los autores de este texto publicamos uno basado en la experiencia de impartir diversos cursos de Topología Diferencial en el Departamento de Geometría y Topología de la Facultad de Ciencias Matemáticas de la Universidad Complutense de Madrid. Se recogían en él las ideas centrales de transversalidad y aproximación en variedades con borde: los métodos que introdujo Thom a mediados del siglo XX, y que permiten hacer, en frase acuñada por Milnor «topología desde el punto de vista diferenciable». Efectivamente, producen de manera extremadamente elegante resultados muy importantes. Muchos colegas usaron aquel texto en sus cursos e hicieron comentarios y sugerencias, y luego, ya descatalogado, aún preguntaban por él. Este halago nos empujó a escribir otro nuevo ya en este siglo, año 2014. Inevitablemente, nuestro punto de vista sobre cómo se desarrolla un curso de iniciación de Topología Diferencial había variado con los años. Así, aunque fieles a la idea original, produjimos un texto distinto en aspectos relevantes. Aquí fue esencial la contribución del autor que no estuvo en aquella aventura inicial. Hubo después en 2020 una reedición sustancialmente revisada, y ahora el lector tiene en sus manos ésta con más mejoras. Todas las revisiones son el fruto de explicar el texto en el aula, en el Master de Matemáticas Avanzadas de la UCM. Los cambios introducidos han derivado en buena parte del entusiasmo de nuestros alumnos por aprender y les agradecemos haber elegido nuestras clases. Muchas personas nos han ayudado en estas reediciones, y no podemos nombrarlas a todas, pero como representación queremos citar a Jaime J. Sánchez Gabites, cuyas observaciones han sido verdaderamente iluminadoras. En fin, de nuevo agradecemos a Sanz y Torres que continuadamente apoya nuestro deseo de perfeccionar el libro. Este texto está pensado para un cuatrimestre a razón de cinco horas semanales, contando con el trabajo individual de cada estudiante. El objetivo es explicar qué es la transversalidad y cómo se utiliza junto con la aproximación para abordar problemas topológicos. Las treinta y cuatro secciones de sus cuatro capítulos se enumeran en la página IX y sus títulos dan razón precisa de las etapas del recorrido que proponemos. La salida es la definición de variedad con borde y la meta son seis teoremas fundamentales: el del punto fijo de Brouwer, el de invarianza del dominio, el de separación de Jordan-Brouwer, el de homotopía de Brouwer-Hopf, el de la esfera de Brouwer y el de Borsuk-Ulam. Señalemos que: (1) Consideramos siempre variedades sumergidas en un espacio afín, pero incluimos una prueba elemental a partir de las definiciones de que las variedades diferenciables abstractas son todas sumergidas. (2) Construimos de manera explícita directa los entornos tubulares de una variedad diferenciable en un espacio afín y las retracciones propias diferenciables asociadas. (3) Detallamos la construcción de collares de una variedad con borde, sin utilizar flujos, y de las correspondientes retracciones propias continuas (diferenciables no pueden ser). (4) Demostramos los resultados completos de aproximación y homotopía diferenciables para aplicaciones con valores en variedades con borde. En las fuentes que conocemos estos resultados de aproximación y homotopía se formulan sólo para aplicaciones con valores en variedades sin borde. El argumento habitual apela a las retracciones diferenciables, y por ello no vale para variedades con borde. Aquí utilizamos collares para complementar ese argumento y poder establecer los resultados sin restricciones de borde. Todo esto es ciertamente parte del folklore de los especialistas, pero es bueno escribir ese folklore alguna vez. En otro orden de cosas, hacemos una simplificación grande de la presentación limitándonos a variedades de clase infinito, que denominamos simplemente variedades diferenciables. El tratamiento ...

Ficha del Libro

Titulo Alternativo : Un curso de iniciación (3ª Edición)

Total de páginas 186

Autor:

  • Enrique Outerelo Domínguez
  • Juan Ángel Rojo
  • Jesús María Ruiz Sancho

Categoría:

Formatos Disponibles:

MOBI, PDF, EPUB, AZW

Descargar Libro

Valoración

Popular

4.3

19 Valoraciones Totales


Otros libros de la categoría Matemáticas

La Derivada Parcial Es Facil Manual Autodidactico

Libro La Derivada Parcial Es Facil Manual Autodidactico

Antes de sonreír escépticamente al leer el título de este libro, conviene releer y estudiar el libro Derivar es fácil de la misma editorial, del que es continuación, y saber que, la derivada parcial de una función de varias variables, es, en términos prácticos, igual a la derivada de una función de una variable, de manera que las dos tienen las mismas fórmulas y los mismos procedimientos. A un determinado nivel no existen materias difíciles, sino materias o mal explicadas o explicadas de forma compleja. Un ejemplo de esto, lo tenemos en el desarrollo del cálculo diferencial, el...

Las matemáticas en la vida real: introducción básica al modelamiento matemático

Libro Las matemáticas en la vida real: introducción básica al modelamiento matemático

Con el transcurrir de los siglos, el hombre ha buscado estudiar diferentes fenómenos naturales para comprenderlos y dar solución a estos, de ser necesario. Ante ello, la aplicación de los conceptos matemáticos se ha incrementado día a día, siendo una oportunidad para asumir el complejo reto de evolucionar en la enseñanza y la transmisión eficiente de las ideas fundamentales sobre los conceptos de cálculo y el modelamiento matemático.Los autores de este libro han orientado sus esfuerzos para asumir este reto de contribuir a la pedagogía aplicada, específicamente abordando la...

Aplicaciones de las funciones algebraicas

Libro Aplicaciones de las funciones algebraicas

Este texto está dirigido a estudiantes de ingenierías o alumnos de secundaria que deseen complementar sus conocimientos sobre las funciones algebraicas. Su propósito es mostrar algunas aplicaciones relacionadas con perímetro, área, volúmen, cantidad de material y costos con más de un sistema de representación de los elementos de una función, lo cual permitirá una mayor comprensión de la utilidad de las funciones en las situaciones descritas. en cada uno de los ejemplos se aplica un procedimiento que guiará al estudiante a solucionar y comprobar el modelo funcional para cada...

Ultimas Novedades Blibliográficas



Últimas Búsquedas


Categorías Destacadas